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Compressive Optical Imaging Systems - 
Theory, Devices, and Implementation 

Final Technical Report 

Richard G. Baraniuk, David Brady, Kevin Kelly, and Rebecca Willett 

1    Introduction 

In this report we begin by restating the motivation for our work, and review the project objectives. We present our results and 
follow each research thrust with potential future areas of work. We conclude with a list of publications supported by the grant, 
and a list of project personnel. 

1.1 Review of motivation 

Humans are visual creatures, and image sensors that extend our reach cameras have improved dramatically in recent times 
thanks to the introduction of CCD and CMOS digital imaging technology. Current digital cameras acquire a pixelized image 
or video sequence by sampling the incident light field using a photon-sensitive array of TV pixels. For high-resolution images, 
N must be large, often N » 10°. Reducing the camera storage and communication burden to a manageable level requires 
compression, such as JPEG [11 or JPEG2000 [2,3]for images and MPEG [4] for video. In a conventional image/video camera 
system, the pixel array consumes a large chip area, and the compression algorithm, while throwing away well over 90% of the 
imagers output, consumes a large amount of computational energy. These size, data-inefficiency, and energy issues limit the 
ubiquity and usefulness of digital cameras, particularly in battery operated scenarios. 

Sampling theory is the fundamental basis of sensor systems generally and imaging systems specifically. Conventional con- 
ceptions of sampling theory do not distinguish between "measurements" and "samples." In imaging systems, a measurement 
is a linear projection or inner product y = (x, <j>) of the spatial object distribution x. 

While the goal of conventional optical design is generally to make <t> a delta function in the naive sampling space, more 
complex sampling strategies have a long history. The most obvious example is tomography, which relies on Radon projections 
of the object distribution. However, more complex coding strategies have long been applied in imaging [5] and spectroscopy 
[6, 7]. Advanced coding strategies have become increasingly attractive over the past decade as the sophistication of both 
information processing and electronic sensors has increased. Both dynamic [8,9] and static [10,11) coding strategies have 
recently been demonstrated as mechanisms for improving a variety of sensor system metrics, including system geometry, data 
load, and sensitivity. The goal of an imaging system is to acquire x. The fundamental advantage of digital systems is that the 
measured data y and the estimated image x are not the same thing, whereas in direct view and film systems the measurement 
and the image are identical. In systems constructed to date, the distinction between the electronic signal distribution on a focal 
plane and the displayed image has mainly been exploited simply as a means of remotely transmitting the image. While a few 
examples of deliberate distortions of y to improve metrics in x have been demonstrated, many interesting strategies remain 
unexplored. Strategies applying modern sampling theories to both y and :r as discrete objects are particularly under-developed. 

1.2 Review of project objectives 

This project aimed at exploring the foundations and applications of CS in optical imaging problems. Specifically, we investi- 
gated: 

• Advancement of CS theory In a CS sensor, compression is part of the analog acquisition process. It was our goal to 
study and design new CS theory and algorithms in the context of optical imaging systems. We developed a theory that 
incorporates Hidden Markov Tree signal models with CS acquisition and recovery, and produced an algorithm for fast 
recovery of such signals. 
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• Implementation of CS practice We set out to demonstrate Compressive Sensing (CS) in a real-world imaging system. 
We applied compressive measurement and reconstruction schemes in development of a single-pixel camera. 

• Application of CS principles to optics Our final objective was to develop a test-bed that uses spectral channels for 
compact and programmable spatial compressive coding. We used this test-bed to perform single-shot hyper-spectral 
imaging. 

2   Advancement of CS theory 

2.1 Summary of results 

We developed theory and proposed a new algorithm that enables fast recovery of piecewise smooth signals, a large and 
useful class of signals whose sparse wavelet expansions feature a distinct "connected tree" structure. Our algorithm fused 
recent results on iterative reweighted /i-norm minimization with the wavelet Hidden Markov Tree model. The resulting 
optimization-based solver outperformed the standard compressive recovery algorithms as well as previously proposed wavelet- 
based recovery algorithms. As a bonus, the algorithm reduced the number of measurements necessary to achieve low-distortion 
reconstruction. 

2.2 Compressive sensing background 
Let x € R'v be a signal and let the matrix * := [^i, ip2, • •., I!>N] 

De a basis for RN. We say that x is K-sparse if it can be 

expressed as a linear combination of K vectors from \1>; that is, x = ^2i=i 9„tij>ni with K <#C N. 

2.2.1 Incoherent measurements 
Consider a signal x that is /f-sparse in *. Consider also an M x N measurement matrix <1>, M <g; A', where the rows of # 
are incoherent with the columns of Vl>. For example, let 3> contain i.i.d. Gaussian entries; with high probability, such a matrix 
is incoherent with any fixed lJ> (universality). Compute the measurements y = $a: and note that y e R'u with M <g Ar. 
The CS theory states that there exists an overmeasuring factor c > 1 such that only M := cK incoherent measurements y are 
required to reconstruct x with high probability [12,13]. That is, just cK incoherent measurements encode all of the salient 
information about the A"-sparse signal x. 

2.2.2 Reconstruction from incoherent projections 
The overmeasuring factor c required depends on the (nonlinear) reconstruction algorithm. Under the sparsity assumption, one 
can search for the sparsest signal that agrees with the obtained measurements; by using the £0-norm ||0||() = #{n : 9n ^ 0}, 
the reconstruction algorithm can be expressed as 

9 = argmin||0||o   subject to   **^ = y. 
0 

While this algorithm demands the smallest possible overmeasuring factor (c = 2), its computational complexity renders it 
unfeasible. Most of the existing literature on CS [12-14] has concentrated on optimization-based methods for signal recovery, 
in particular fi-norm minimization. The ^-norm approach seeks a set of sparse coefficients 9 by solving the linear program 

?=argniin||0||i    subject to   $*0 = y; (1) 
0 

the reconstruction of sparse signals via ^-norm minimization is typically exact, provided that c = 0(log(A/A')). Other 
algorithms, including greedy algorithms [15], have also been proposed for CS reconstruction and require similar oversampling 
factors. However, all of these algorithms are generic in the sense that, aside from sparsity, they assume no particular structure 
within the signal coefficients. 

2.2.3 Iterative reweighted t, -norm minimization 
When the complexity of the signal is measured using the £i-norm, individual signal coefficients are penalized according to 
their magnitude; in contrast, when the ^o-norm is used to measure the signal complexity, the penalty for a nonzero coefficient 
is independent of its magnitude. The effect of this disparity is reflected in the increase of the oversampling factor between the 
two algorithms. 

A small variation to the /i-norm penalty function has been suggested to rectify the imbalance between the ^o-norm and 
^i-norm penalty functions [16]. The basic goal is to minimize a weighted fi-norm penalty function ||W0||i, where W is a 
diagonal "weighting" matrix with entries Wnu approximately proportional to 1/|0,,|. This creates a penalty function that 
achieves higher magnitude-independence. Since the true values of 9n are unknown (indeed they are sought), however, an 
iterative reweighted ^-norm minimization (IRWL1) algorithm is suggested. 



The algorithm starts with the solution to the unweighted /i-norm minimization algorithm (1), which we name #l<)'. The 
algorithm then proceeds iteratively: on iteration i > 0, it solves the optimization problem 

fl(i)=argmin||W(i)d||I    subject to    $*6» = y, (2) 
0 

where W^ is a diagonal reweighting matrix with entries 

W(i) = te-i)| + r' 
" II.II I \" n \ )        ' 

and t is a small regularization constant. The algorithm can be terminated when the change between consecutive solutions is 
smaller than an established threshold or after a fixed number of iterations. Each iteration of this algorithm can be posed as a 
linear program, for which there exist efficient solvers. 

2.3 CS for wavelet-sparse signals 

A widely used sparse representation in signal and image processing is the wavelet transform. Since piecewise polynomial 
signals have sparse wavelet expansions [17] and since many real-world signals describe punctuated, piecewise smooth phe- 
nomena, it follows that many real-world signals have sparse or compressible wavelet expansions. However, the significant 
wavelet coefficients in general do not occur in arbitrary positions. Instead they exhibit a characteristic signal-dependent 
structure. 

Without loss of generality, we focus on ID signals, although similar arguments apply for 2D and higher dimensional data 
in the wavelet or curvelet domains. In a typical ID wavelet transform, each coefficient at scale j € {1..... J := log2(Ar)} 
describes a portion of the signal of size 0(2 '). With 2-'-1 such coefficients at each scale, a binary tree provides a natural 
organization for the coefficients. Each coefficient at scale j < log2(./V) has 2 children at scale j + 1, and each coefficient at 
scale j > 1 has one parent at scale j     1. 

Due to the analysis properties of wavelets, coefficient values tend to persist through scale. A large wavelet coefficient (in 
magnitude) generally indicates the presence of a singularity inside its support; a small wavelet coefficient generally indicates 
a smooth region. Thanks to the nesting of child wavelets inside their parents, edges in general manifest themselves in the 
wavelet domain as chains of large coefficients propagating across scales in the wavelet tree; we call this phenomenon the 
persistence property. Additionally, wavelet coefficients also have exponentially decaying magnitudes at finer scales [17]. This 
causes the significant wavelet coefficients of piecewise smooth signals to concentrate within a connected subtree of the wavelet 
binary tree. 

This connected subtree structure was exploited by previous CS reconstruction algorithms known as Tree Matching Pursuit 
(TMP) and Tree Orthogonal Matching Pursuit (TOMP) [18, 19]. TMP and TOMP are modifications to the standard greedy 
algorithms matching pursuit and orthogonal matching pursuit, with the proviso that each selection made by the greedy algo- 
rithm build upon a connected tree. Such techniques enable faster algorithms due to the restriction in the greedy search and 
lower reconstruction distortion due to the inherent regularization. 

However, lor real-world piecewise smooth signals, the nonzero coefficients generally do not form a perfectly connected 
subtree. The reasons for this are twofold. Eirst, since wavelets are bandpass functions, wavelet coefficients oscillate between 
positive and negative values around singularities. Second, due to the linearity of the wavelet transform, two or more singu- 
larities in the signal may cause destructive interference among coarse scale wavelet coefficients; that is, the persistence of 
the wavelets across scale is weaker at coarser scales. Either of these factors may cause the wavelet coefficient correspond- 
ing to a discontinuity to be small yet have large children, yielding a non-connected set of meaningful wavelet coefficients. 
TMP and TOMP used heuristic rules to ameliorate the effect of this phenomenon. However, this considerably increases the 
computational complexity, and the success of such heuristics varies markedly between different signals in the proposed class. 

In summary, we have identified several properties of wavelet expansions: 

• large/small values of wavelet coefficients generally persist across the scales of the wavelet tree; 

• persistence becomes stronger as we move to finer scales; and 

• the magnitude of the wavelet coefficients decreases exponentially as we move to finer scales. 

We also note that the sparsity of the wavelet transform causes the coefficients to have a peaky, non-Gaussian distribution. 

2.4 Hidden Markov Tree models 

The properties identified in Section 2.3 induce a joint statistical structure among the wavelet coefficients that is far stronger 
than simple sparsity or the simple connectivity models used in the TMP and TOMP algorithms. HMT [20] offers one modeling 



framework that succinctly and accurately captures this joint structure. HMT modeling has been used successfully to improve 
performance of denoising, classification, and segmentation algorithms for wavelet-sparse signals. 

The HMT models the probability density function of each wavelet as a Gaussian mixture density with a hidden binary 
state that determines whether the coefficient is large or small. The persistence across scale is captured by a tree-based Markov 
model that correlates the states of parent and children coefficients. The following properties are captured by the HMT. 

Non-Gaussianity: Sparse coefficients can be modeled probabilistically using a mixture of Gaussians: one component 
features a large variance that models large nonzero coefficients and receives a small weight (to encourage few such coeffi- 
cients), while a second component features a small variance that models small and zero-valued coefficients and receives a 
large weight. We distinguish these two components by associating to each wavelet coefficient 0n an unobserved hidden state 
Sn € {S, L}\ the value of S„ determines which of the two components of the mixture model is used to generate 6„. Thus we 
have 

f(6n\Sn = S)    =   ^(0.4,,)- 
H9n\Sn = L)   =   M((\n'ln). 

with a\ n > a\ n. To generate the mixture, we apply a probability distribution to the available states: p(S„ = S) = pf, and 
p(S„ = L)= p£, with p£ + p% = 1. 

Persistence: The perpetuation of large and small coefficients from parent to child is well-modeled by a Markov model that 
links coefficient states. This induces a Markov tree where the stale S„ of a coefficient 0„ is affected only by the state S-p(n) 

of its parent V(n). The Markov model is then completely determined by the set of state transition matrices for the different 
coefficients 6„ at wavelet scales 1 < j < J: 

Pn^S     Pn~'L 

Vn^S     Pn^L 

The persistence property implies that the values of p^L and pft^
s are significantly larger than their complements. If we 

are provided the hidden state probabilities for the wavelet coefficient in the coarsest scale pf and pf, then the probability 
distribution for any hidden state can be obtain recursively: 

P(S„ =L) = P%{n)P?rL+Pv(n)Pn~*L- 

As posed, the HMT parameters include the probabilities for the hidden state {pf,Pi}, the state transition matrices An, and 
Gaussian distribution variances {a2 n, as n} for each of the wavelet coefficients 9n. To simplify the model, the coefficient- 
dependent parameters are made equal for all coefficients within a scale; that is, the new model has parameters A, for 1 < j < J 
and {alra2

Sj} for 1 < j < J. 
Magnitude decay: To enforce the decay of the coefficient magnitudes across scale, the variances a\ • and a'\ are 

modeled so that they decay exponentially as the scale becomes finer [21]: 

rr2 C     0-iai- 

Since the wavelet coefficients that correspond to signal discontinuities decay slower than those representing smooth regions, 
the model sets as > <*£. 

Scale-dependent persistence: To capture the weaker persistence present in the coarsest scales, the values of the state 
transition matrices A, follow a model that strengthens the persistence at finer scales [21 ]. Additionally, the model must reflect 
that in general, any large parent generally implies only one large child (that which is aligned with the discontinuity). This 
implies that the probability that S„ = L, given that Sp^ = L, should be roughly 1/2. HMT accounts for both factors by 
setting 

PLrL = \ + CLL2~
1L3

, P^S = \ - CLLT^ 

pf~S = j _ css2-1sS,   and p^L = Css2^sj. 

Estimation: We can obtain estimates of all parameters 
0 = {pi-Pi,as,aIl,CCTL,Crrs,jLris,CLL.Css} 

for a set of coefficients 9 using maximum likelihood estimation: 

eA/L=argmax/(0|(-)). (3) 
0 

The expectation-maximization (EM) algorithm in [20] efficiently performs this estimation. Similarly, one can obtain the stale 
probabilities p(Sn = S\9, 0) using the Viterbi algorithm; the state probabilities for a given coefficient will be dependent on 
the states and coefficient values of all of its predecessors in the wavelet tree. 
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Figure 1: Performance of IRWLI algorithm, normalized by the performance of (i -norm minimization. Since all values are less than I, 
IRWLI and HMT+IRWLI consistently outperforms i\-norm minimization. 

2.5 HMT-based weights for IRWL1 
The IRWLI algorithm described in Sec. 2.2.3 provides an opportunity to implement flexible signal penalizations while retain- 
ing the favorable computational complexity of fi-norm minimizations. 

We now pose a new weight rule for the IRWLI algorithm that integrates the HMT model to enforce the wavelet coefficient 
structure during CS reconstruction. Our weighting scheme, dubbed HMT+IRWLI, employs the following weighting scheme: 

w^ = (P(sn = L\&' l\e)+6y". 
In words, for each wavelet coefficient in the current estimate we obtain the probability that the coefficient's hidden state is 
large; in the next iteration, we apply to that coefficient a weight that is inversely proportional to that probability. The parameter 
d' is a regularization parameter for cases where p{Sn = L\(P~1^) is very small, and the exponent r/ is a parameter that regulates 
the strength of the penalization for small coefficients. The goal of this weighting scheme is to penalize coefficients with large 
magnitudes that have low likelihood of being generated by a wavelet sparse signal: these coefficients are often the largest 
contributors to the reconstruction error. 

The first step of HMT+IRWLI consists of an initial training stage in which an EM algorithm solves (3) to estimate the 
values of the parameters for a representative signal; additionally, the solution 6*(l,) for the standard formulation (1) is obtained. 
Subsequently, we proceed iteratively with two alternating steps: a weight update step in which the Viterbi algorithm for state 
probability calculations is executed for the previous solution 0**-1', and a reconstruction step in which the obtained weights 
are used in (2) to obtain an updated solution #'''. The convergence criterion for this algorithm is the same as for the IRWLI 
algortihm. 

Other probabilistic models for wavelet-sparse signals can also be used in combination with the IRWLI algorithm, including 
generalized Gaussian densities [22], Gaussian scales mixtures [23], and hierarchical Dirichlet processes [241. 

2.6 Simulations 
We now compare the IRWLI and HMT+IRWLI algorithms. We use piecewise-smooth signals of length N = 1024, with 5 
randomly placed discontinuities and cubic polynomial pieces with random coefficients. Daubechies-4 wavelets are used to 
sparsify the signals. Measurements are obtained using a matrix with i.i.d. Gaussian entries. For values of M ranging from 
102 to 512, we test the ^-norm minimization and the IRWLI, TMF [18] and HMT+IRWLI algorithms. We fix the number 
of iterations for IRWLI and HMT+IRWLI to 10. The parameters are set for best performance to e = 0.2, q = 0.1, and 
8 = 10~1(). For each M we perform 100 simulations using different randomly generated signals and measurement matrices. 

Figure I shows the magnitude of the reconstruction error for each of the algorithms, normalized by the error of the un- 
weighted /'i-norm minimization reconstruction, as a function of the iteration count. Figure 2 shows a reconstruction example. 
TMP performs well for smaller numbers of measurements M. IRWLI consistently outperforms (\ minimization. Our pro- 
posed HMT+IRWLI algorithm outperforms IRWLI for most values of M. For large A/ near /V/2, HMT+IRWLI becomes 
less efficient than IRWLI; we speculate that at this stage the recovered signal has roughly equal numbers of large and small 
wavelet coefficients, which begins to violate the HMT model. Figure 2 plots the various reconstructed signals for one realiza- 
tion of the experiment, with M = 300. 

2.7    Future work 

We showed in our work that for piecewise smooth signals, the HMT+IRWLI scheme reduces the artifacts of the (i-norm 
minimization reconstruction over fewer iterations than the standard iterative reweighted f\ minimization algorithm. Our 
scheme can be used as well in the extensions of the iterative reweighted ^-norm minimization scheme, such as reconstruction 
from noisy measurements. We look to extend this line of work to higher dimensional data. As this work demonstrated that 
using HMT assumptions aids in compressive sensing and signal recovery, we will broaden our approach to further explore a 
model-based paradigm for CS. 
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Figure 2: Example outputs for the reconstruction algorithms. 

Figure 3: Aerial view of the single-pixel compressive sampling (CS) camera in the lab [25]. 

3    Implementation of CS practice 

3.1    Summary of results 

The single-pixel camera is a Ilexible architecture we used to physically implement CS. We analyzed the performance of CS 
and two other candidate multiplexing methodologies and compared them to the performance of a brute-force array of A' 
pixel sensors. Integral to our analysis is the consideration of Poisson photon counting noise at the detector, which is image- 
dependent. We conducted two separate analyses to assess the "bang for the buck" of CS. The first was a theoretical analysis 
that provides general guidance. The second was an experimental study that indicates how the systems typically perform in 
practice. 

3.2    Single-pixel camera overview 

The single-pixel camera is an optical computer that sequentially measures the inner products y[m] = (x, 4>m) between an TV- 
pixel sampled version x of the incident light-field from the scene under view and a set of two-dimensional (2D) test functions 
{<f>m} [25]. As shown in Fig. 3, the light-field is focused by biconvex Lens 1 not onto a CCD or CMOS sampling array but 
rather onto a DMD consisting of an array of N tiny mirrors. 

Each mirror corresponds to a particular pixel in x and 4>m and can be independently oriented either towards Lens 2 
(corresponding to a 1 at that pixel in 4>m) or away from Lens 2 (corresponding to a 0 at that pixel in 4>m)- The reflected 
light is then collected by biconvex Lens 2 and focused onto a single photon detector (the single pixel) that integrates the 
product x[n]0m[n] to compute the measurement y[m] = (x,<j)m) as its output voltage. This voltage is then digitized by an 
A/D converter. Values of 4>m between 0 and 1 can be obtained by dithering the mirrors back and forth during the photodiode 



Figure 4: Single-pixel photo album, (a) 256 x 256 conventional image of a black-and-white R. (b) Single-pixel camera reconstructed image 
from M = 1300 random measurements (50x sub-Nyquist). (c) 256 x 256 pixel color reconstruction of a printout of the Mandrill test 
image imaged in a low-light setting using a single photomultiplier tube sensor, RGB color filters, and M = 6500 random measurements. 

integration time. To obtain o,„ with both positive and negative values (±1, for example), we estimate and subtract the mean 
light intensity from each measurement, which is easily measured by setting all mirrors to the full-on 1 position. 

To compute CS randomized measurements y = <I>x as in 

y = 4>x = <J"I><Y. 

we set the mirror orientations <f>m randomly using a pseudo-random number generator, measure y[m], and then repeat the 
process M times to obtain the measurement vector y. We can set M = 0(K \og(N/K)) which is <s N when the scene being 
imaged is compressible by a compression algorithm like JPEG or JPEG2000. Since the DMD array is programmable, we can 
also employ test functions o„, drawn randomly from a fast transform such as a Walsh, Hadamard, or Noiselet transform [26. 
27]. 

The single-pixel design reduces the required size, complexity, and cost of the photon detector array down to a single unit, 
which enables the use of exotic detectors that would be impossible in a conventional digital camera. Example detectors include 
a photomultiplier tube or an avalanche photodiode for low-light (photon-limited) imaging (more on this below), a sandwich of 
several photodiodes sensitive to different light wavelengths for multimodal sensing, a spectrometer for hyperspectral imaging, 
and so on. 

In addition to sensing flexibility, the practical advantages of the single-pixel design include the facts that the quantum 
efficiency of a photodiode is higher than that of the pixel sensors in a typical CCD or CMOS array and that the fill factor 
of a DMD can reach 90% whereas that of a CCD/CMOS array is only about 50%. An important advantage to highlight is 
the fact that each CS measurement receives about N/2 times more photons than an average pixel sensor, which significantly 
reduces image distortion from dark noise and read-out noise. Theoretical advantages that the design inherits from the CS 
theory include its universality, robustness, and progressivity. 

The single-pixel design falls into the class of multiplex cameras [28], The baseline standard for multiplexing is classical 
raster scanning, where the test functions {</>,„} are a sequence of delta functions S[n - m] that turn on each mirror in turn. 
As we will see below, there are substantial advantages to operating in a CS rather than raster scan mode, including fewer total 
measurements (M for CS rather than N for raster scan) and significantly reduced dark noise. 

3.2.1    Image acquisition examples 

Figure 4 (a) and (b) illustrates a target object (a black-and-white printout of an "R") x and reconstructed image x taken by the 
single-pixel camera prototype in Fig. 3 using N = 256 x 256 and A/ = TV/50 [25]. Fig. 4(c) illustrates an N = 256 x 256 
color single-pixel photograph of a printout of the Mandrill test image taken under low-light conditions using RGB color filters 
and a photomultiplier tube with M = N/U). In both cases, the images were reconstructed using Total Variation minimization, 
which is closely related to wavelet coefficient f\ minimization [29]. 

3.3    Comparative scanning methodologies 

In our comparative analysis, the four imaging methodologies we consider are: 

• Pixel array (PA): a separate sensor for each of the N pixels receives light throughout the total capture time T. This is 
actually not a multiplexing system, but we use it as the gold standard for comparison. 

• Raster scan (RS): a single sensor takes N light measurements sequentially from each of the N pixels over the capture 
time. This corresponds to test functions {</>,„} that are delta functions and thus $ = /. The measurements y thus 
directly provide the acquired image x. 

• Basis scan (BS): a single sensor takes /V light measurements sequentially from different combinations of the /V pixels 
as determined by test functions {</>,„} that are not delta functions but from some more general basis [30], In our analysis, 



Table 1: Comparison of the four camera scanning methodologies. 

Pixel Array Raster Scan Basis Scan Compressive Sampling 
Number of measurements N N N M < N 

Dynamic range D D .XI) 
2 

\ n 
2 

Quantization (total bits) NB NB N(D + log2 N) AI(B + \og2N + \og2CN + 1) 
Photon counting MSE p 

r H (3/V-2)£ < 3C%M% 

we assume a Walsh basis modified to take the values 0/1 rather than ±1; thus $ = W, where W is the 0/1 Walsh matrix. 
The acquired image is obtained from the measurements y by x = <b~1y = W~ly. 

• Compressive sampling (CS): a single sensor takes M < N light measurements sequentially from different combi- 
nations of the N pixels as determined by random 0/1 test functions {<pm}. Typically, we set M = 0(K\og(N/K)) 
which is <S N when the image is compressible. In our analysis, we assume that the M rows of the matrix <I> consist of 
randomly drawn rows from a 0/1 Walsh matrix that arc then randomly permuted (wc ignore the first row consisting of 
all 1 \s). The acquired image is obtained from the measurements y via a sparse reconstruction algorithm such as BP1C 
(see Sidebar: Compressive Sampling in a Nutshell). 

3.4    Theoretical analysis 

We conduct a theoretical performance analysis of the above four scanning methodologies in terms of the required dynamic 
range of the photodetector, the required bit depth of the A/D converter, and the amount of Poisson photon counting noise. Our 
results are pessimistic in general; we show in the next section that the average performance in practice can be considerably 
better. Our results are summarized in Table 1. An alternative analysis of CS imaging forpiecewise smooth images in Gaussian 
noise has been reported in [31 ]. 

Dynamic range: We first consider the photodetector dynamic range required to match the performance of the baseline 
PA. If each detector in the PA has a linear dynamic range of 0 to D, then it is easy to see that single-pixel RS detector need 
only have that same dynamic range. In contrast, each Walsh basis test function contains N/2 1 's, and so directs N/2 times 
more light to the detector. Thus, BS and CS each require a larger linear dynamic range of 0 to ND/2. On the positive side, 
since BS and CS collect considerably more light per measurement than the PA and RS. they benefit from reduced detector 
nonidealities like dark currents. 

3.4.1    Quantization error 

We now consider the number of A/D bits required within the required dynamic range to match the performance of the baseline 
PA in terms of worst-case quantization distortion. Define the mean-squared error (MSF.) between the true image x and its 
acquired version x as MSE x|||.  Assuming that each measurement in the PA and RS is quantized to B bits, 

the worst-case mean-squared quantization error for the quantized PA and RS images is MSE = \/ND2~B~1 [32]. Due to 
its larger dynamic range, BS requires B + log2 N bits per measurement to reach the same MSE distortion level. Since the 
distortion of CS reconstruction is up to C/v times larger than the distortion in the measurement vector, we require up to an 
additional log2 Cjv bits per measurement. One empirical study has found roughly that Cjy lies between 8 and 10 for a range 
of different random measurement configurations [33]. Thus, BS and CS require a higher-resolution A/D converter than PA 
and RS to acquire an image with the same worst-case quantization distortion. 

3.4.2    Photon counting noise 

In addition to quantization error from the A/D converter, each camera will also be affected by image-dependent Poisson noise 
due to photon counting [34]. We compare the MSE due to photon counting for each of the scanning methodologies. The 
details are summarized in Table 1. We see that the MSE of BS is about three times that of RS. Moreover, when M < ^Ur, 

the MSE of CS is lower than that of RS. We emphasize that in the CS case, we have only a fairly loose upper bound and that 
there exist alternative CS reconstruction algorithms with better performance guarantees, such as the Dantzig Selector [12]. 

3.4.3    Summary 

From Table I, we see that the advantages of a single-pixel camera over a PA come at the cost of more stringent demands on 
the sensor dynamic range and A/D quantization and larger MSE due to photon counting effects. Additionally, the linear de- 
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Figure 5: Average MSE for Raster Scan (RS), Basis Scan (BS), and Compressive Sampling (CS) single-pixel images as a function of the 
total image capture lime T (real data). 

pendence of the MSE on the number of image pixels N for BS and RS is a potential deal-breaker for high-resolution imaging. 
The promising aspect of CS is the logarithmic dependence of its MSE on N through the relationship M = 0(K \og(N/K)). 

3.5 Experimental results 

Since CS acquisition/reconstruction methods often perform much better in practice than the above theoretical bounds suggest, 
in this section we conduct a simple experiment using real data from the CS imaging testbed depicted in Fig. 3. Thanks to the 
programmability of the testbed, we acquired RS, BS, and CS measurements from the same hardware. We fixed the number 
of A/D converter bits across all methodologies. Figure 5 shows the pixel-wise MSE for the capture of a N = 128 x 128 
pixel "R" test image as a function of the total capture time T. Here the MSE combines both quantization and photon counting 
effects. For CS we took M = /V/10 total measurements per capture and used a Daubechies-4 wavelet basis for the sparse 
reconstruction. 

We make two observations. First, the performance gain of BS over RS contradicts the above worst-case theoretical 
calculations. We speculate that the contribution of the sensor's dark current, which is not accounted for in our analysis, 
severely degrades RS's performance. Second, the performance gain of CS over both RS and BS is clear: images can either be 
acquired in much less time for the same MSE or with much lower MSE in the same amount of time. 

3.6 Future work 

We presented an overview of a simple yet flexible single-pixel architecture for CS based on a DMD spatial light modulator. 
While there are promising potential applications where current digital cameras have difficulty imaging, there are clear tradeoffs 
and challenges in the single-pixel design. Our current and planned work involves better understanding and addressing these 
tradeoffs and challenges. Other potential avenues for research include extending the single-pixel concept to wavelengths 
where the DMD fails as a modulator, such as THz and X-rays. 

4   Application of CS principles to optics 

4.1    Summary of results 

We developed two single-shot spectral imaging approaches based on the concept of compressive sensing. The primary fea- 
tures of the system designs were either one or two dispersive elements in conjunction with a binary-valued aperture code. In 
contrast to thin-film approaches to spectral filtering, this structure resulted in easily-controllable, spatially-varying, spectral 
filter functions with narrow features. Measurement of the input scene through these filters was equivalent to projective mea- 
surement, and hence was treated with compressive sensing frameworks. We created two alternative reconstruction frameworks 
and demonstrated their application to experimental data. 

4.2    Compressive spectral imaging 

Spectral imaging is an emerging tool for a variety of scientific and engineering applications because of the additional informa- 
tion it provides about the nature of the materials being imaged. Traditional imagers produce two-dimensional spatial arrays of 
scalar values representing the intensity of a scene. A spectral imager, in contrast, produces a two-dimensional spatial array of 



vectors which contain the spectral information for the respective spatial locations. The resulting data is known as the spectral 
data cube because of its three-dimensional nature. The addition of spectral information can provide valuable information in 
a variety of contexts ranging from environmental monitoring [35,36] to astrophysics [37] and from biochemistry [38,39] to 
security applications [40]. 

Adoption of spectral imaging has been slow because of a fundamental tradeoff between spatial resolution, spectral reso- 
lution, light collection, and measurement acquisition time. Standard spectral imaging designs can simultaneously optimize 
only two of the four quantities—resulting in relatively poor overall performance. The origin of these tradeoffs can be readily 
understood. Traditional, non-multiplexed, spectrometers already exhibit a tradeoff between light collection and spectral reso- 
lution. Any system that attempts to use one of these systems as the spectrograph in a spectral imager inherits this limitation. 
Further, the fact that the spectral image data cube is three-dimensional, while available detector arrays are two-dimensional 
results in either a need for scanning (which increases the overall acquisition time) or in the tiling of the detector array with 
multiple two-dimensional slices of the cube (which, if the field of view is held fixed, limits the spatial resolution). In the past 
decade, however, there have been a number of ingenious designs that allow independent control of three of these quantities 
simultaneously [41^43], largely through the introduction of various multiplex measurement techniques. 

The work described in this report attempts to eliminate the remaining tradeoffs by presenting two novel spectral imag- 
ing systems and associated reconstruction frameworks that fully decouple the four operational quantities. Both imagers are 
completely static, single-shot designs, resulting in mechanically robust and inexpensive systems. In these respects the system 
architectures are a descendant of the coded-aperture spectroscopy architecture previously developed by several of the current 
authors [44^18]. In our first extension to spectral imaging [43], however, the implementation required a sequence of exposures 
in order to measure the contents of the spectral data cube. The system architecture described in this report has been devel- 
oped precisely to avoid that shortcoming. In this system, the imager does not directly measure each voxel in the data cube. 
Instead, it collects a small number (relative to the size of the data cube) of coded measurements, and then a novel reconstruc- 
tion method is used to estimate the spectral image from the noisy projections. The two systems described in this report are 
called the dual disperser coded aperture snapshot spectral imager (DD-CASSI) and single disperser coded aperture snapshot 
spectral imager (SD-CASSI), depending on whether one or two dispersive elements are present in the design. 

This approach draws heavily on ideas in the emerging field of compressed sensing [13,29,49], In compressed sensing, 
certain design strategies are incorporated into measurement systems in a way that can dramatically improve the system's 
ability to produce high-quality reconstructions from a limited number of measurements. The basic idea of this theory is that 
when the signal of interest is very sparse (i.e., zero-valued at most locations) or highly compressible in some basis, relatively 
few incoherent observations are necessary to reconstruct the most significant non-zero signal components. In the remainder of 
this manuscript we demonstrate the practical application of these ideas to spectral imaging. We describe a particular system 
design, present a multiscale reconstruction algorithm, and demonstrate that accurate spectroscopic images can be estimated 
from an under-determined set of noisy projections. 

4.3    DD-CASSI 

This section describes a single-shot spectral imaging approach based on the concept of compressive sensing called the dual 
disperser coded aperture snapshot spectral imager (DD-CASSI). The primary features of the system design are two dispersive 
elements, arranged in opposition and surrounding a binary-valued aperture coded. In contrast to thin-film approaches to 
spectral filtering, this structure results in easily-controllable, spatially-varying, spectral filter functions with narrow features. 
Measurement of the input scene through these fillers is equivalent to protective measurement in the spectral domain, and 
hence can be treated with the compressive sensing frameworks recently developed by a number of groups. We present a 
reconstruction framework and demonstrate its application to experimental data. 

4.3.1    DD-CASSI system design 

The system is comprised of two sequential dispersive arms of the 4-f type commonly used (singly) as a traditional dispersive 
spectrometer. The two arms are arranged in opposition so that the second arm exactly cancels the dispersion introduced by 
the first arm. A coding aperture occupies the plane separating the two arms. A schematic of the system is shown in Fig. 6. 

The operational characteristics of the system can be easily understood on a conceptual level. A standard imaging relay (not 
shown) is used to form an image of a remote scene in the plane of the input aperture. The input aperture is then imaged through 
the first arm onto the plane containing the coding aperture. However, because the arm contains a dispersive element, multiple 
images are formed at wavelength-dependent locations. At this point, the spatial structure in the plane of the coding aperture 
contains a mixture of spatial and spectral information about the source. Passing through the coding aperture modulates this 
information with the applied pattern. The second arm then undoes the spatial-spectral mixing introduced by the first arm as it 
forms an image of the source on the detector. In the process of undoing the effects of arm 1, the spatial modulation introduced 
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Figure 6: Schematic of the spectral imager. 

by the coding aperture is transformed into a spatial and spectral modulation. The details of the process are described in the 
following section. 

4.3.2    System model 

We denote the spectral density entering the instrument as So(x, y; A). The spectral density just prior to the code aperture is 
then 

Si (*, y. A) = Jf dx' dy' 6(x' - [x + o(A - K)))S(y' - y) S0(x\ y': A) 

= S0(x + a(X-Xc),y\X). (4) 

Here the Dirac delta functions describe propagation through unity-magnification imaging optics and a dispersive element with 
linear dispersion a and center wavelength A,. (Note that this model assumes linear dispersion—which is approximately true 
only over limited wavelength ranges. The system can still be operated in nonlinear regions, as the processing algorithm is 
calibration based. The linear model is only used to provide guidance about the aperture code.) 

Immediately after the coding aperture the spectral density is given by 

S2(x,y;X) =T(x,y)Si(x,y;\) = T(x, y) S0(x + a(X - Ac), y\ A), 

with T(x, y) the spatial transmission pattern imposed by the coding aperture. 
Propagation through the second set of imaging optics and the second dispersive element results in a spectral density in the 

detector plane of 

S3(x, y; A) = JJ dx' dy' 6(x' - [x - a(X - Ac)]) 5{y' - y) S2(x', y'; A) 

= T(x - Q(A - Ac), y) S0{x. y; A) 

= F(x,y;X)S0(x:y;X). (?) 

Again, the Dirac delta functions describe propagation through the imaging optics and disperser (note the internal sign change 
representing the reversed orientation of the disperser). Here we have defined the spectral density filter function F(x, y; A) = 
T{x - a(X - Ac).t/). This formulation makes explicit the fact that the two-dimensional coding pattern introduces a three- 
dimensional filter function that acts on the source spectral density. 

As the detector is wavelength-insensitive, the ultimate quantity measured is not the spectral density in the detector plane, 
but the intensity 

I(x.y)= fd\F(x,y;\)S0(x,y;X). 

Further, the detector array is spatially pixelated. If we take the pixel size as A, then the detector measurements become 

Inm = dxdydX rect ( 
x y 
A A 

) F(x,y;X)So(x,y;X). (6) 

It then becomes natural to consider a coding aperture where the transmission function T is pixelated with features that are 
the same size as the detector pixels (Note that for implementation reasons, it is actually preferable to consider codes where the 
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features sizes are integer multiples of the detector pixel size. Extending this formal treatment to that case is straightforward.) 

T(x, y) = J2 Tn'm> rect (^ - m', | - n') . (7) 
m' .n' 

With this, (6) becomes 

y /,„„ = \_\ / / / dx dy dX rect ( — - ?n. — — n J rect I m, 
m'n'        ' ^ 

x Tn>m>SQ(x,y;X). (8) 

A     " 

To gain an understanding of how the coding pattern influences the measured intensity distribution, it is instructive to 
consider two highly constrained cases. First we consider a monochromatic source with 5,

()(x, y. A) = IQ(X, y) 6(X — A,.), 
where /Q(X, y) is the intensity distribution of the monochromatic scene. In this case, (8) simplifies significantly 

?, ///,lr dydX rect (i_'"' i ~")rect (i"'"'' i ~"') 'nm|A=Ar — 
in' n' 

x r„-m- I0(x, y) 6(X -A,.) 

/   , ^inm' "nit'  '-n'm' -»0,il/i 
m  n 

J ram *nmi v-'/ 

where /n,nm is a spatially-pixelated version of the monochromatic source intensity IQ(X, y). Next, we consider the response 
to a monochromatic source at A = A,. + AA with AA = A/a, with a the linear dispersion of the dispersive elements. In this 
case, we find 

l„m\\=\,+AX = ^2  /// dxdydX rect (— - m, -j- - n) rect ( — - (m' + 1), -^ - n'j 
rn'n' 

x Tn,m,Io(x,y)6(\-(\c + A\)) 

/ J Omm' Onn' *-n'(m'-\ 1) *0,nm 
TO'TI' 

= Tn(m_i) /o,nm- (10) 

Thus we see that the contribution from a particular wavelength is the pixelated source weighted by a version of the aperture 
code that shifts in the x direction as the wavelength changes. At the center wavelength, the weighting pattern is aligned with 
the detector pixels. For wavelength shifts that are integer multiples of AA, the pattern is again registered with the detector 
pixels. However, for intermediate wavelengths, the elements in the coding pattern straddle multiple detector pixels. 

Finally, we define the filter function 

i y A - Af 
linmp = 5Z /// dxdydX rect ( — - m, 

"•^T'P 

x rect (
T~Q(^-Ac) - m\ J - n') Tn.m,, (11) 

and the fully pixelated source spectral density as 

,S"'"P = A2AA   /// dxdydX rect ( A ~ m' A _ "'    AA" ~ P) 5()^' y' A^' 

If the source spectrum is slowly varying on the scale AA, then we can approximate (6) as 

* nm        / J "-limp Snmp- \ ' <-) 
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4.3.3    Code design 

The analysis in the previous section determined the nature of the spatio-spectral filter that is applied and how it is related to 
the code pattern placed in the system. It is most convenient to view the filter function wnmp as a spatially varying collection 
of spectral filters. In this framework, the analysis above reveals the following facts: 

1. The spectral filler for a given spatial location may contain structure on a scale as narrow as AA = A/a. Typically, this 
is significantly narrower than the features in a traditional thin-film interference filter. 

2. The spectral filters in different rows of the detector (different n) are unconstrained. There are no correlations imposed 
by the physical structure. 

3. The spectral filters within a row (same n) are cyclic permutations of each other. This arises from the spatial shift in 
the m-direction that arises from spectral shifts, (e.g., In a hypothetical instrument with 4 spectral channels, the spectral 
filter applied to a particular pixel had values {a,b,c,d), then the filters on its left/right neighbors are {b,c,d,a} and 
{</, r;, b, c}, respectively). 

4. The measurement at a given detector pixel is the inner product of the spectral filter for that pixel and the pixelated source 
spectrum for that spatial location (see (12)). 

To create a system with M spectral channels requires a 1-Dcodeof at least length M. For the remainder of this section, we 
assume a code of length M for simplicity. The physical nature of the system produces spectral filters that are all M possible 
cyclic shifts of the fundamental code. Thus we are led to consider well-conditioned codes that consist of cyclic permutations 
of a single master codeword. The canonical example of these types of codes are those based on the cyclic S-matrices [7]. 
For our initial system (and earliest simulations), we drew upon the order-15 cyclic S-matrix with the fundamental codeword 
"100100011110101". This code provides several advantages, including M unique cyclic shifts and an overall transmission 
efficiency of 8/15. 

If the coding plane were directly tiled with this pattern, the various filter functions would be implemented on the detector 
plane in the manner depicted in Fig. 7. In this image, the number k denotes the A "' spectral filter function, which corresponds 
to the fundamental codeword circularly shifted by k - 1 bits; thus 1 refers to the fundamental codeword "100100011110101", 
2 refers to the shifted codeword "001000111101011", etc. The difficulty with this arrangement is that there are no compact 
regions that contain all of the filter functions. 

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 

Figure 7: Distribution of filter functions that arises from simple tiling of the fundamental codeword. No compact region contains all 15 
filters. 

If we instead tile the aperture plane with a unit cell of the form 

100100011110101 

001111010110010 

101011001000111 

(three copies of the fundamental codeword, but with circular shifts of five elements between rows) then the filter functions are 
arrayed on the detector plane as displayed in Fig. 8. In this scheme, any 3x5 region on the detector contains all 15 spectral 
filters. 

10 11 12 13 14 15 1 

15 1 2 3 4 5 6 

5 6 7 8 9 10 11 

10 11 12 13 14 15 1 

15 1 2 3 4 5 6 

Figure 8:  Distribution of filter functions that arises from the more complicated unit cell. Any 3x5 region contains all 15 filters. 
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4.3.4    Multiscale reconstruction method 

In this section we describe the multiscale reconstruction process employed to get the spatial and spectral information from the 
mask-modulated intensity information represented in (12). First we formulate a model for the noisy observations we measure 
at the detector array, and then describe the estimation process. We compute an optimal solution to this underdetermined 
problem using an expectation maximization algorithm combined with a multiscale Poisson denoising technique. The following 
subsections give a systematic description of our approach. 

Let the spectral image of interest be denoted s = {snmp}, and the intensity of the observations as / = {/„,„}, so that 
equation (12) can be written in matrix-vector notation as 

I = Hs. 

where the matrix H performs the discretized filtering described in Sec. 4.3.2. In addition, we model our observed data as 

d ~ Poisson(J) = Poisson(Hs), 

so that the likelihood of observing d given spectral image s is 

T-r   T-r   ' I i—p "n,np*ninp I 

p(d\Hs)=n n H —• 
, . ''nut- n = l m=l 

Note that H has many more columns than rows (by a factor of A/), making this a very underdetermined problem. 
To solve this challenging inverse problem, we seek a solution (s) which is both a good match to the data (d) and sparse. 

In particular, we solve the following optimization problem: 

s = axgmin {- \ogp(d\Hs) + pen(s)} , (13) 

where S is a collection of estimators to be described below, and pen(s) is a penalty is proportional to the sparsity of s in a 
multiscale spatio-spectral representation. This will be described in detail below. 

The use of sparsity to solve challenging and ill-posed inverse problems has received widespread attention recently [13, 
14,29,33,49]. The objective function proposed in (13) in particular is similar to those proposed in [14,33], in that we seek 
a solution accurately represented by a small number of cells in a recursive dyadic partition (i.e. sparse), as described below. 
We compute the solution to this problem using an Expectation-Maximization algorithm, which in this case is a regularized 
version of the Richardson-Lucy algorithm [50-52]. The method consists of two alternating steps: 

Step 1: 
yW=8W.xHT(d./Hsl% 

where . x and ./ denote element-wise multiplication and division, respectively. 

Step 2: Compute s^( + 1) by denoising ?/": 

s^+1' = arg mill < — logp(j/''|s) + pen(s) [ . 

The penalized likelihood denoising method employed in Step 2 takes advantage of correlations in the data between both 
wavelengths and spatial locations. The proposed method entails performing hereditary Haar intensity estimation via tree 
pruning in the spatial dimensions, with each leaf of the resulting unbalanced quad-tree decomposition corresponding to a 
region of spatially homogeneous spectra. 

In particular, we determine the ideal partition of the spatial domain of observations and use maximum likelihood estimation 
to fit a single spectrum to each square in the optimal spatial partition. The space of possible partitions is a nested hierarchy 
defined through a recursive dyadic partition (RDP) of the datacube domain. The optimal partition is selected by merging 
neighboring squares of (i.e. pruning) a quad-tree representation of the observed data to form a data-adaptive RDP V. Each 
of the terminal squares in the pruned spatial RDP could correspond to a region of intensity which is spatially homogeneous 
or smoothly varying (regardless of the regularity or irregularity between the spectral bands). This gives our estimators the 
capability of spatially varying the resolution to automatically increase the smoothing in very regular regions of the intensity 
and to preserve detailed structure in less regular regions. 
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Given a partition V, s(V) can be calculated by finding the "best" spectrum fit to the observations over each cell in V. This 
can be accomplished by simply computing the mean observed spectrum in each cell of"P. The final spatio-spectral estimate 
is then calculated by finding the partition which minimizes the total penalized likelihood function: 

V arg mi 
V 

iii{-logp(y('>|s(P)) + pen(P)} 

(14) 

where pen('P) is a penalty proportional to the number of cells in the RDP, encouraging a sparse solution (in terms of the size 
of the RDP). This method is described in detail in [53]. 

This approach is similar to the image estimation method described in [54,55], with the key distinction that the proposed 
method forces the spatial RDP to be the same at every spectral band. A sample such partition is displayed in Fig. 9. This 
constraint makes it impossible for the method to perform spatial smoothing at some spectral bands but not others. In other 
words, when a tree branch is pruned in the proposed framework, it means partition cells are merged in every spectral band 
simultaneously at the corresponding spatial location. This approach is effective because an outlier observation in one spatio- 
spectral voxel may not be recognized as such when spectral bands are considered independently, but may be correctly pruned 
when the corresponding spectrum is very similar to spatially nearby spectra. 

Figure 9: Sample partition of a spatio-spectral data cube. The spatial partition is the same at each spectral band, making it impossible for 
the estimation method to perform spatial smoothing at some spectral bands but not others. 

The accuracy of these estimates can be augmented by a process called cycle-spinning, or averaging over shifts, resulting 
in translation-invariant (TI) estimates [56]. Cycle-spinning was derived in the context of undecimated wavelet coefficient 
thresholding in the presense of Gaussian noise, but is difficult to implement efficiently in the case of tree-pruning methods. 
The above multiscale tree-pruning methods can be modified to produce the same effect by averaging over shifts, but the 
increase in quality comes at a high computational cost. Novel computational methods [55], however, can be used to yield 
TI-Haartree pruning estimates in O (N2M\ogN) time for an N x TV x M data cube. 

4.3.5    Denoising simulation results 

As described above, the proposed method exploits spatial homogeneities while simultaneously taking advantage of corre- 
lations between neighboring spectral bands. This significantly reduces over-smoothing across spatial boundaries and edges 
while improving the reconstruction of each spectrum. To test the effectiveness of the proposed method, we develop a phantom 
using a color image of peppers, as displayed in Figure 10. For each pixel in this image, we define a spectrum in our phantom 
data cube which corresponds to the color in the image. This results in a 256 x 256 x 64 data cube, with a mean intensity 
(photon count) of 7.04 per voxel. 

The spatially-varying intensities for three representative spectral bands (one from the red portion of the simulated spectrum 
(16th spectral band), one green (24th spectral band), and one blue (53rd spectral band)) are displayed in Figure 11(a), (e), and 
(i). Note the faint contrast between some of the features. Noisy observations in the same three spectral bands are displayed 
in Figure 11(b), (f), and (j). Several faint or low-contrast features are not easily discernible by the eye due to the low photon 
counts. In this simulation study, the penalty term in (13) was multiplied by a scalar weight to improve empirical performance. 
The weight was not selected to minimize any particular error metric, but rather to yield generally accurate reconstructions. 
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Figure 10: Tcsl data set. (a) Image used to generate 256 x 256 x 16 spatio-spectral data cube, (b) Representative selection of generated 
spectra in different image regions. Wavelength units are normalized so each spectral band corresponds to one wavelength unit. 

If we were to reconstruct this data cube by performing hereditary TI-Haar image estimation [55] on each spectral band, we 
would achieve the results displayed in Figure 11(c), (g), and (k); the mean squared error associated with this imaging-based 
data cube estimate, denoted 5/, is \\s - s/||2/||s||2 = 5.22 • 10~3. (While the images may appear oversmoothed, decreasing 
the weight on the penalty term results in strong noisy artifacts and increases the MSE significantly.) Spatio-spectral analysis 
offers dramatic advantages over processing individual spectral bands independently, as shown in Figure 11(d), (h), and (1). 
The mean squared error associated with this data cube estimate, denoted s.s-, is \\s - s.s||2/||s||2 = 4.02 • 10~'!. Finally, 
Figure 12 shows four representative spectra and their estimates, further demonstrating the strength of the proposed method. 

4.3.6 DD-CASSI reconstruction simulation results 

This method is used to reconstruct a spatio-spectral data cube from simulated measurements modeled after the DD-CASSI 
system. For this experiment, we generated a phantom spatio-spectral data cube similar to the one used in Section 4.3.5, but 
with only 15 (instead of 64) spectral bands. The intensities in several spectral bands, the color projection of the data cube, 
and several representative spectra for this phantom are displayed in the first row of Figure 14. The 256 x 256 noisy simulated 
observations are displayed in Figure 13; in this experiment, the mean photon count per pixel in a; is 1, 534. 

The result of the proposed reconstruction method is displayed in the second row of Figure 14. The reconstructed spectral 
image computed using the multiscale denoising method described in Section 4.3.5 has an MSE of 3.42 • 10~2, while the 
reconstructed spectral image computed without any regularization (i.e. the conventional Richardson-Lucy reconstruction) has 
an MSE of 4.64 • 10~2 and significantly more artifacts. 

4.3.7 Experimental results 

To test the DD-CASSI architecture, we constructed a proof-of-concept spectral imaging system as described in Sec. 4.3.1. A 
photograph of the experimental prototype is shown in Fig. 16. As designed and built, the prototype has an operational range 
of 520-590 nm. It is an interesting consequence of the system approach that shifting the wavelength by one spectral band 
should produce the same physical shift on the coding array as a spatial shift by one spatial resolution element. As a result, 
the system requires a low amount of dispersion. For this prototype we achieved this with a prism-based approach (diffractive 
approaches are possible, but more challenging as low dispersion tends introduce overlap from higher diffraction orders). 

Before the system may be used for spectral imaging, it requires calibration. This calibration is performed by sequentially 
measuring the response of the system to spatially-uniform monochromatic light at 2 nm steps in the range 520-590 nm. To 
minimize the noise in the calibration, the system response at a given wavelength is taken to be the average of 10 exposures. 
Further, the monochromator used to generate the light has a non-uniform output as a function of wavelength. To control for 
this, a small portion of the light output is fed into a photodiode with a known wavelength response. At each wavelength step, 
the output of this photodiode is used to adjust the exposure time to keep the total energy propagating through the spectral 
imager constant. This process is automated via MATLAB. When the resulting system responses are stacked according to 
wavelength, the result is the system filter function hnmp as defined in (11). 

As a first lest of the system we consider simple targets illuminated with monochromatic light. We begin with a pingpong 
ball and illuminations at 532 nm and 543 nm. A representative detector image (taken with 532 nm illumination) is shown in 
Fig. 17(a). Note the modulation introduced by the coding aperture. The pattern is particularly clear because of the monochro- 
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Figure 11: Spatio-spectral denoising results, (a) Spatial variation of intensity in 16th spectral band, (b) Noisy observations, with an 
average of 7.04 photon count per voxel, (c) Result after using tree-pruning to denoise the image in each spectral band independently; 
MSE = 5.22 • 1CT3. (d) Result after proposed reconstruction; MSE = 4.02 • 1CT3. (e) Spatial variation of intensity in 24th spectral 
band, (f) Noisy observations, (g) Result after using tree-pruning to denoise the image in each spectral band independently, (h) Result after 
proposed reconstruction, (i) Spatial variation of intensity in 53 spectral band, (j) Noisy observations, (k) Result after using tree-pruning 
to denoise the image in each spectral band independently. (I) Result after proposed reconstruction. 

matic source. An estimated intensity image of the scene, generated by summing the spectral channels in the reconstructed 
datacube is shown in Fig. 17(b). The reconstruction algorithm has largely succeeded in eliminating the modulation introduced 
by the screen. Figures 17(b) and (c) are the spectral estimates for a particular spatial location in the cases with 532 nm and 
543 nm illumination, respectively. The reconstruction accurately locates the spectral peaks. 

We next consider the same simple target but now with slightly broader illumination—broadband light filtered by 10 nm 
FWHM bandpass filters centered at 560 nm and 580 nm, respectively. A representative detector image take with the 560 nm 
filler is shown in Fig. 18(a). Note that the sharpness of the modulation pattern introduced by the coding aperture has decreased 
as a result of the increased spectral width. An estimated intensity image of the scene is shown in Fig. 18(b). Figures 18(c) and 
(d) show the spectral reconstruction at a particular spatial location for the 560 nm and 580 nm bandpass filters, respectively. 
Again, the reconstruction accurately locates the spectral peaks. However, we note that, for the 580 nm bandpass, a spurious 
peak now appears near 520 nm. For this bandpass, there is significant source illumination at wavelengths longer than 590 
nm. The system is designed for a spectral range of 520-590 nm. Any wavelengths outside this band are aliased back into 
this range (the illumination produces a coding pattern that is indistinguishable from that generated by a wavelength inside the 
operational band). The peak at 520 nm, then, is an aliased version of source energy above 590 nm. Any final system would 
avoid this difficulty by incorporating a bandpass filter matched to the spectral range of the instrument. 

Finally, we image a slightly less constrained target under more normal illumination. For this portion of the experiment, 
we use a collection of citrus fruit under broadband (white) light illumination. The resulting reflection spectrum contains 
significant energy in the spectral band of interest. Figure 19(a) shows the detector image captured during this experiment. The 
top fruit is green, the bottom right is yellow-green, and the bottom left is yellow-orange. Note the the broad spectral ranges 
have made the spectral patterns very indistinct, and that the patterns are subtly different in the three regions as a result of 
the different spectral components. A reconstructed intensity image is shown in Fig. 19(b). The spectral reconstructions for 
the three different regions are shown in Fig. 19(c) along with measurements made by a conventional spectrometer. There is 
good qualitative agreement between the reconstructions and the conventional measurements, especially in the central spectral 

17 



yellow pepper 
—purple bacKground 
-""•green pepper 
— red pepper 

10 20 30 40 50 60 
Wavelength 

(a) 
yellow pepper 

^—purple background 
-—green pepper 
^• red pepper 

/y^Jk.     / vlA', 
10 20 30 40 50 60 

Wavelength 

30 

2S 

20 

I15 

10 

yellow pepper 
——purple background 
"••• green pepper 

AAi 

Wavelength 

(c) (d) 

Figure 12: Spaiio-speciral denoising results, (a) True spectra at five different spatial locations, (b) Observed spectra at same locations, (c) 
Estimated spectra at same locations after performing intensity estimation on each spectral band independently, resulting in s\. (d) Estimated 
spectral at same locations after performing proposed reconstruction, resulting in Ss- 

regions. We believe that the measurements from the conventional instrument are not fully accurate because of the practical 
difficulties in coupling the rellected spectra to the probe. However, at least a portion of the deviation arises from inaccurate 
reconstructions, as we again see some spurious peaks near 520 nm that are the result of spectral aliasing. 

Figure 20 shows slices of the reconstructed datacube for 8 specific channels across the spectral range. 

4.4    SD-CASSI system 

This section reports a new compressive CASSI instrument dubbed the single disperser coded aperture snapshot spectral im- 
ager (SD-CASSI). Like the DD-CASSI, the SD-CASSI does not directly measure each voxel in the desired three-dimensional 
datacube. It collects a small number (relative to the size of the datacube) of coded measurements and a sparse reconstruction 
method is used to estimate the datacube from the noisy projections. The instrument disperses spectral information from each 
spatial location in the scene over a large area across the detector. Thus, spatial and spectral information from the scene is 
multiplexed on the detector, implying that the null space of the sensing operation of the SD-CASSI is different from that of 
the DD-CASSI. Also, a raw measurement of a scene on the detector rarely reveals spatial structure of the scene and makes 
block processing more challenging. 

Since the DD-CASSI only multiplexes spectral information in the datacube, it cannot reconstruct the spectrum of a point 
source object. On the other hand, the SD-CASSI can reconstruct the spectrum of a point source, provided that the source 
spatially maps to an open element on the coded input aperture. This implies that for reconstructions demanding high spatial 
resolution with less stringent demands on spectral resolution, the DD-CASSI instrument should be the compressive spectral 
imager of choice. On the other hand, where spectral resolution is more critical than spatial resolution in the datacube, the SD- 
CASSI instrument should be chosen. The SD-CASSI has the additional benefit of requiring fewer optical elements, making 
optical alignment much easier. 

The SD-CASSI also removes the CTIS constraints of measuring multiple projections of the datacube and using a large 
focal plane array. Essentially, just one spectrally-dispersed projection of the datacube that is spatially modulated by the 
aperture code over all wavelengths is sufficient to reconstruct the entire spectral datacube. 
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Figure 13: Simulated noisy observations of peppers spatio-spectral data cube collected by proposed DD-CASSI. 

4.4.1    SD-CASSI system model 

A schematic of the compressive, snapshot SD-CASSI is shown in Fig. 21. A standard imaging lens is used to form an image of 
a remote scene in the plane of the coded aperture. The coded aperture modulates the spatial information over all wavelengths 
in the spectral cube with the coded pattern. Imaging the cube from this plane through the dispersive element results in multiple 
images of the code-modulated scene at wavelength-dependent locations in the plane of the detector array. The spatial intensity 
pattern in this plane contains a coded mixture of spatial and spectral information about the scene. We note that this design 
essentially extends the architecture of our computational static multimodal, multiplex spectrometers [44] to computational 
spectral imaging, with the addition of an imaging lens placed in front of the input aperture code. 

Below, we mathematically model the SD-CASSI sensing process. The model assists us in developing the system operator 
matrix for the reconstruction algorithm. The model does not account for optical distortions introduced by the optical ele- 
ments in the instrument such as blurring and smile distortion [57]. However, it does help us understand the basic operations 
implemented by the optical elements. 

The spectral density entering the instrument and being relayed to the plane of the coded aperture can be represented as 
SQ(X. y: A). If we represent the transmission function printed on the coded aperture as T(x, y), the spectral density just after 
the coded aperture is: 

Si (x: y; A) = .%{x. y; A) T(x, y), 

After propagation through the coded aperture, the relay optics and the dispersive element, the spectral density at the detector 
plane is: 

S2(r, y: A)    =    JJ 6(x' - [.,: + a(A - A,)]) %' - y) Sx (.,•'. //; A) dx' dy' 

=    JJ S(x' - [x + Q(A - A,)]) 8(y' - y) S0(x'. y'; A) T(x', y') dx' dy' 

=    S0(x + Q(A - Ac), y- A) T(x + Q(A - Ac), y), 

where the Dirac delta functions describe propagation through unity-magnification imaging optics and a dispersive element 
with linear dispersion a and center wavelength \n. The detector array is insensitive to wavelength and measures the intensity 
of incident light rather than the spectral density. Thus, the continuous image on the detector array can be represented as: 

I(x,y) f S0(x + o(A - Ac), y; A) T(x + «(A - Ac), y) dX. 

This image is a sum over the wavelength dimension of a mask-modulated and later sheared datacube. Note that this is 
in contrast to the spatially registered image formed on a DD-CASSI detector as a result of summing over the wavelength 
dimension of a datacube that is first sheared, mask-modulated and finally unsheared. 

Since the detector array is spatially pixelated with pixel size A, I(x, y) is sampled across both dimensions on the detector. 
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The measurements at position (n, m) on the detector can be represented as: 

Inm    =     // I(*,y) rect ( — - in, — - nj dxdy 

=   Jjj S0(x + o(A - Ac), y; A) r(x + o (A - Ac), j,) 

x rect I — — m, — — n) dx dy dX. (15) 

Reconstructions of datacubes from the physical system benefit if the coded aperture feature size is an integer multiple. 
r/, of the size of the detector pixels, A. This avoids the need for sub-pixel positioning accuracy of the coded aperture. The 
aperture pattern T(.r. y) can be represented as a spatial array of square pinholes, with each pinhole having a side length qA 
and Tnimi representing an open or closed pinhole at position (n'. m') in the pinhole array: 

T(*,y)= *£Tn,m, rect (^-»i>,JL-n'). 
m' ,Ti.' v 

With this representation for the aperture pattern, the detector measurements as represented in (15) become: 

'"'"    =    E Tn'm- ///rect (* + a^~ Ac) - m', X - n'j rect (| - m, ± - n) 

X.S'()(.J- + tv(\ - Ac), ;y; A) r/.r dy (/A. 

Denoting the source spectral density So(x, y; A) in discrete form as sy* and the aperture code pattern T(x, y) as T,;, the 
detector measurements in matrix form can be written as: 

Inm      —      / ,<(mtt)iiM(m+t)ii ~^~ wnm 
k 

=    (»*)„„, (16) 

where H is a linear operator that represents the system forward model. 

4.4.2    SD-CASSI reconstruction method 

As mentioned previously, the SD-CASSI measures a two-dimensional, spatio-spectral multiplexed projection of the three- 
dimensional datacube representing the scene. Reconstructing a datacube from this compressed measurement relies on the 
assumption that the sources in the scene have piecewise smooth spatial structure, making the datacube highly compressible 
in the wavelet basis. In this section, we describe the reconstruction method used to estimate the datacube from the detector 
measurements. The datacube can be represented as 

s = we, 
where 0 is a vector composed of the two-dimensional wavelet transform coefficients for each spectral band concatenated to 
form one vector, and W denotes the inverse two-dimensional wavelet transform applied to each spectral band to form the 
datacube s. In the presense of noise, w, the SD-CASSI detector measurement can be represented as: 

unm 

=    (HWG)nm + wnm, 

where H is a representation of the system forward model described in Section 4.4.1 and </;,„,, is noise. 
Because of particularly ill-posed nature of H in the SD-CASSI system, the EM reconstruction method developed for 

the DD-CASSI system for Poisson observations is ineffective and results in very strong artifacts when applied to the SD- 
CASSI system. As a result, we apply an alternative reconstruction method based on the assumption of white Gaussian noise 
to reconstructing the SD-CASSI spectral images. This approach, as demonstrated below, is effective when the number of 
photons collected is large and the Gaussian assumption is accurate, but is significantly less effective in low light conditions. 

If the datacube, s, consists of {p x p} spatial channels with q spectral channels, it can be represented as a cube of size 
{p x p x q}. The corresponding detector measurements, d, can be represented as a matrix of size {p x (p + q — 1)}. The 
number of columns in this matrix reflects the fact that the detector measurement is a sum of coded images of the scene at each 
spectral channel, with each spectral image displaced by a column of pixels from the adjacent image. If we represent s and d 

20 



as column vectors, the linear operator matrix, H, can be represented as a matrix of size {[p (p + q - 1)] x (p2 q)}. The vector 
of wavelet coefficients of the datacube, 9, is of size {[p2q (31og2(p) + 1)J x 1}. The size of this vector reflects the fact that the 
wavelet decomposition of the datacube is performed as a two-dimensional undecimated transform on each of the q spectral 
channels. The undecimated transform is used to ensure that the resulting method is translation invariant. 

An estimate, s, for the datacube can be found by solving the problem: 

W argminllld-HWe'll^ + rllO'll,} 
0' 

The solution of this nonlinear optimization problem has received significant attention recently [49,58,59]. We use the Gradient 
Projection for Sparse Reconstruction (GPSR) method developed by Figueiredo et al. [60]. This approach is based upon a vari- 
ant of the Barzilai-Borwein gradient projection method [61], and has code available online at http://www.lx.it.pt/~mtf/GPSR/. 
The reconstruction method searches for a datacube estimate with a sparse representation in the wavelet basis; i.e. a 9 which 
contains mostly zeros and a relatively small number of large coefficients. The first term in this optimization equation min- 
imizes the (.2 error between the measurements modeled from the estimate and the true measurement. The second term is a 
penalty term that encourages sparsity of the reconstruction in the wavelet domain and controls the extent to which piecewise 
smooth estimates are favored. In this formulation, r is a tuning parameter for the penalty term and higher values of r yield 
sparser estimates of 9. 

4.4.3   Experimental results 

To experimentally verify the SD-CASSI spectral imaging concept, we constructed a proof-of-concept prototype as shown 
in Fig. 22. The prototype consisted of (i) a coded aperture, lithographically patterned on a chrome-on-quartz mask, (ii) 
three lenses from Schneider Optics Inc. with an f/# of 1.4 and a focal length of 22.5 mm, (iii) an equilateral prism from 
Edmund Optics Inc. as a dispersive element, (iv) a monochrome charge-coupled device (CCD) detector from Photometries 
with 1040 x 1392 pixels that are 4.65 //m square each, and (v) a 500 - 620 nm bandpass filter that was placed in front of 
the imaging lens to remove the impact of stray light on the experimental measurements. MATLAB routines were written to 
control and capture data on the CCD. 

The aperture code used in all the experiments was based on an order 192 S-matrix code [7], with features that were four 
CCD pixels wide and four CCD pixels tall, and two completely closed rows of CCD pixels added between the code rows. 
The columns of the original S-matrix code were shuffled in a random but repeatable way. The code was originally designed 
for a coded-aperture spectrometer and was not optimized for the spectral imaging application demonstrated in this report. 
Although we have developed the theory for and conducted experimental studies of optimal aperture codes for coded aperture 
spectroscopy [44,62], it is not applicable to the spectral imaging application demonstrated here. Work on optimal aperture 
code(s) for the CASSI instruments will be reported in a future manuscript. 

An equilateral prism was used instead of a grating because the grating produces overlapping diffractive orders while the 
prism only refracts the wavelengths into one order. Prisms also have large transmission efficiencies [63]. Given the system 
geometry and the low dispersion of the equilateral prism, the number of CCD columns illuminated when white light was 
allowed to pass through the system was less than half the width of the CCD array. Thus, the spectral range of the instrument 
was essentially limited by the quantum efficiency of the CCD image sensor. 

We note from the outset that given the proof-of-concept nature of the prototype system, it was simply put together with 
off-the-shelf parts and not optimized in optical ray tracing software. Consequently, the results presented in this section are 
limited to displaying the ability of the SD-CASSI to reconstruct relatively simple spatio-spectral scenes. We are in the process 
of constructing a second generation instrument that is sturdier and has much higher measurement quality. 

To generate an estimate of the datacube representing the scene, the reconstruction algorithm requires two inputs - the 
aperture code used by the instrument to encode the datacube and the detector measurement of the datacube. Instead of using 
the code pattern printed on the aperture mask as the code pattern used for the reconstruction, the instrument was uniformly 
illuminated with a single wavelength source in the form of a 543 nm laser. Figure 23 shows the detector measurement of the 
aperture code pattern after propagation through the optics. This is a more accurate representation of the spatial coding scheme 
applied to the datacube than the code printed on the aperture mask, and thus produces a more accurate reconstruction of the 
datacube. 

We constructed a scene consisting of two ping pong balls as shown in Fig. 24. One ping pong ball was illuminated 
with a 543 nm laser and a white light source filtered by a green 560 nm narrow band filter. The other was a red ping pong 
ball illuminated with a white light source. Figure 25 shows a CCD measurement of the scene by the SD-CASSI. Given the 
low linear dispersion of the prism, there is spatio-spectral overlap of the aperture code-modulated images of each ball. The 
500 - 620 nm bandpass filter placed in front of the imaging lens ensures that only the subset of the datacube corresponding to 
this band of wavelengths is measured by the instrument. 
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Detector measurements of both the code pattern and the scene were digitally downsampled by a factor of two in the row 
and column dimensions prior to performing a reconstruction of the datacube. This downsampling helped reduce the time 
needed by the reconstruction algorithm to generate an estimate of the datacube. The resulting {128 x 128 x 28} datacube 
spanned a spectral range of 540 nm to 640 nm. One hundred iterations of the reconstruction algorithm required about fourteen 
minutes of runtime on a desktop machine. The GPSR method was run with r = 0.05. This value was determined via trial and 
error. Future work is needed to study how to choose the optimal value of r. 

Figure 26 shows the spatial content of each of 28 wavelength channels between 540 nm to 640 nm. Note that the mask 
modulation on the spatial structure visible in Fig. 25 has been removed in all the wavelength channels and that the two balls 
are spatially separated. To validate the ability of the SD-CASSI to reconstruct the spectral signature of objects in the scene, 
we measured the spectral signatures of each ping pong ball using an Ocean Optics spectrometer. Figure 27 (a) shows the 
SD-CASSI spectrum at a point on the green ping pong ball, while Fig. 27 (b) shows the SD-CASSI spectrum at a point on 
the red ping pong ball. The wavelength axis in the plots had to be calibrated due to the non-linear dispersion of the prism 
across the detector. This calibration was performed by tracking the position of a point source while varying its wavelength. 
Figures 27 (a) and (b) also show the Ocean Optics spectrum from each ball for comparison. The two reconstructed SD-CASSI 
spectra closely match those generated by the Ocean Optics spectrometer. 

We note that the reconstruction algorithm used to generate the datacube assumed that the system response when the 
aperture code was fully illuminated with any wavelength was identical to the system response at 543 nm. Thus, it did not 
account for an anamorphic horizontal stretch of the image that is wavelength dependent. The quality of the reconstructed 
datacube could be improved if the reconstruction algorithm utilizes a system response that captures a fully illuminated aperture 
code pattern at all the wavelengths in the spectral range of the instrument. 

An important characteristic of any spectrometer or spectral imager is its spectral resolution. If we ignore the optical 
distortions such as the blurring and the smile distortion, then the spectral resolution of the SD-CASSI is determined by the 
width of the smallest code feature. Consider the case where the smallest code feature maps to two detector pixels. Then 
imaging two adjacent, monochromatic point sources of close but distinct wavelengths on to the smallest code feature can 
potentially result in the spatio-spectral mapping of both point sources to the same pixel on the detector. Thus, the spectral 
resolution for the SD-CASSI, i.e. the separation between the spectral channels, is determined by the amount of dispersion (in 
nm) across two detector pixels. Since the dispersion of a prism is non-linear, the spectral resolution of this instrument varies 
with wavelength. 

Accordingly, an average spectral resolution can be computed for the SD-CASSI experimental prototype. This was de- 
termined by removing the bandpass filter in front of the imaging lens and illuminating the instrument with a 543 nm and 
632 nm laser. The separation between the aperture images resulting from these wavelengths was approximately 100 pixels, 
corresponding to an average dispersion of 0.9 nm per pixel. Since the width of the smallest code feature was 4 detector pixels, 
the average spectral resolution of the instrument was 3.6 nm/spectral channel. 

4.5    Conclusion and future work 

A proof-of-concept prototype was constructed and tested on both highly-constrained and real-world sources. The reconstruc- 
tions accurately captured the spectral features of the source (barring a spectral aliasing that can be eliminated through the 
incorporation of a bandpass filter on future systems). The spatial structure of the reconstructions was also accurate. The 
modulation introduced by the coding aperture was successfully removed by the reconstruction (especially for the broadband, 
real-world scene). 

The result was a single-shot spectral imager that, for the first time, mitigated the trade-offs between spatial resolution, 
spectral resolution, light collection, and measurement acquisition time. While the performance of the system was quite 
acceptable for a lirst proof-of-concept, we feel that the results were limited by the stock optics used to create the present 
prototype. We are currently constructing a new version, with dramatically enhanced spatial and spectral resolution. 
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Figure 14: DD-CASSI reconstruction simulation results, (a) True intensity in 4 spectral band, (b) True intensity in 8 spectral band, (c) 
True intensity in 12 spectral band, (d) Representative spectra from true spatio-spectral data cube, (e) Estimated intensity in 4th spectral 
band, computed using reconstruction method described above with multiscale spatio-spectral regularization; MSE = 3.42 • 10~2. (0 
Estimated intensity in 8 spectral band, computed using reconstruction method described above with multiscale spatio-spectral regulariza- 
tion. (g) Estimated intensity in 12 spectral band, computed using reconstruction method described above with multiscale spatio-spectral 
regularization. (h) Representative spectra from estimated spatio-spectral data cube, computed using reconstruction method described above 
with multiscale spatio-spectral regularization. (i) Estimated intensity in 4 spectral band, computed using reconstruction method described 
above with no regularization; MSE = 4.64 • 10 . (j) Estimated intensity in 8 spectral band, computed using reconstruction method 
described above with no regularization. (k) Estimated intensity in 12th spectral band, computed using reconstruction method described 
above with no regularization. (I) Representative spectra from estimated spatio-spectral data cube, computed using reconstruction method 
described above with no regularization. 
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Figure 15: DD-CASSI reconstruction simulation results, color projections, (a) Color projection of true spatio-spectral data cube, (b) Color 
projection of estimated spatio-spectral data cube, computed using reconstruction method described above with muitiscale spatio-spectral 
regularization. (c) Color projection of estimated spatio-spectral data cube, computed using reconstruction method described above with no 
regularization. 

Figure 16: The DD-CASSI experimental prototype. 
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Figure 17: DD-CASSI experimental results from simple targets with monochromatic illumination, (a) Detector image recorded for 532 nm 
illumination, (b) Intensity image generated by summing the spectral information in the reconstruction for 532 nm illumination, (c) Spectral 
reconstruction at a particular spatial location for 532 nm illumination, (d) Spectral reconstruction at a particular spatial location for 543 nm 
illumination. 
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Figure 18: DD-CASSI experimental results from simple targets with narrow-band illumination, (a) Detector image recorded for illumi- 
nation with a 10 nm FWHM bandpass centered at 560 nm. (b) Intensity image generated by summing the spectral information in the 
reconstruction for the 560 nm bandpass, (c) Spectral reconstruction at a particular spatial location for the 560 nm bandpass, (d) Spectral 
reconstruction at a particular spatial location for the 580 nm bandpass. The origin of the small peak near 520 nm is explained in the text. 
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Figure 19: DD-CASSI experimental results from real-world objects under broadband (white) illumination, (a) Detector image recorded by 
the system, (b) Reconstructed intensity image of the scene, (c) Spectral reconstructions for spatial locations in the three regions. 
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Figure 20: Slices through the reconstructed datacube at 8 particular spectral channels. 
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Figure 21: Schematic of an SD-CASSI. The imaging optics image the scene on to the coded aperture. The relay optics relay the image 
from the plane of the coded aperture to the detector through the dispersive element. 
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Figure 22: Experimental prototype of the SD-CASSI. The prototype consists of (i) a coded aperture, lithographically patterned on a chrome- 
on-quartz mask, (ii) three lenses from Schneider Optics Inc. with an f/# of 1.4 and a focal length of 22.5 mm, (iii) an equilateral prism from 
Edmund Optics Inc. as a dispersive element, (iv) a monochrome charge-coupled device (CCD) detector from Photometries with 1010 x 1392 
pixels that are 4.65//m square each, and (v) a 500 - 620 nm bandpass filter that is placed in front of the imaging lens to remove the impact 
of stray light on the experimental measurements. 
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Figure 23: Aperture code pattern used by the SD-CASSI reconstruction algorithm to generate an estimate of the datacube. 
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Figure 24: A scene consisting of a ping pong ball illuminated with a 543 am green laser and a white light source filtered by a 560 nm 
narrow band filter (left), and a red ping pong ball illuminated with a white light source (right). 
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Figure 25: SD-CASSI detector measurement of the scene consisting of the two ping pong balls. Given the low linear dispersion of the 
prism, there is spatio-spectral overlap of the aperture code-modulated images of each ball. 
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Figure 26: SD-CASSI estimated spatial content of the scene in each of 28 spectral channels between 540 nm and 640 nm. The green ball 
can be seen in channels 3, 4, 5, 6, 7 and 8, while the red ball can be seen in channels 23, 24 and 25. 
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Figure 27: (a) SD-CASSI spectral intensity through a point on the ping pong ball illuminated with a 513 nm green laser and a white light 
source filtered by a 560 nm narrow band filter, (b) SD-CASSI spectral intensity through a point on the red ping pong ball illuminated with 
a white light source. Spectra from an Ocean Optics non-imaging reference spectrometer are shown for comparison. 
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